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SEMANTIC INFORMATION *

YEHOSHUA BAr-HiLlEL and RupoLr CARNAP

I

THE Mathematical Theory of Communication, often referred to also
as Theory (of Transmission) of Information, as practised nowadays,
is not interested in the content of the symbols whose information it
measures. The measures, as defined, for instance, by Shannon,}
have nothing to do with what these symbols symbolise, but only
with the frequency of their occurrence.? The probabilities which
occur in the definientia of the definitions of the various concepts in
Communication Theory are just these frequencies, absolute or relative,
sometimes perhaps estimates of these frequencies.

This deliberate restriction of the scope of Statistical Communica-
tion Theory was of great heuristic value and enabled this theory to
reach important results in a short time. Unfortunately, however, it
often turned out that impatient scientists in various fields applied the
terminology and the theorems of Communication Theory to fields
in which the term ‘information’ was used, presystematically, in a
semantic sense, that is, one involving contents or designata of symbols,

* Received 23. x. 52. This is a slightly revised version of a paper read before the
Symposium on Applications of Communication Theory, London, 26th September
1952. A more detailed and systematic treatment of the same topic appears simul-
taneously in Technical Report No. 247 of the Research Laboratory of Electronics,
Massachusetts Institute of Technology, 1953.

1See, e.g., C. E. Shannon and W. Weaver, The Mathematical Theory of Com-
munication, University of Illinois Press, 1949. E. Colin Cherry’s * A History of the
Theory of Information ’, Proceedings of the Institution of Electrical Engineers, 1951, 98,
part iii, pp. 383-393, gives an excellent account of the development of this theory
and contains also an extensive bibliography up to 1950.

2 A notable exception to this general trend of communication engineers is D. M.
MacKay, who recognised as early as 1948 that the concept of information treated in
Communication Theory, which he proposes now to call ‘selective information ’
should be supplemented by a concept of * scientific information ’. It seems, however,
that this concept does not coincide with what we call here ‘ semantic information ’.
A clarification of the exact relationship will be undertaken elsewhere.

The clearest presentation of MacKay’s ideas may be found in his contribution to
the Transactions of the Eighth Conference on Cybernetics, * In Search of Basic Symbols ’,
New York, 1952, pp. 181-235, where an earlier paper of his, ‘ The Nomenclature of
Information Theory ’,.is also reprinted.
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or even in a pragmatic sense, that is, one involving the users of these
symbols. There can be no doubt that the clarification of these concepts
of information is a very important task. However, the definitions of
information and amount of information given in present Com-
munication Theory do not constitute a solution of this task. To
transfer these definitions to the fields in which those semantic or
pragmatic concepts are used, may at best have some heuristic stimulat-
ing value but at worst be absolutely misleading.

In the following, the outlines of a Theory of Semantic Information
will be presented. The contents of the symbols will be decisively
involved in the definition of the basic concepts of this theory and an
application of these concepts and of the theorems concerning them to
fields involving semantics thereby warranted. But precaution will
still have to be taken not to apply prematurely these concepts and
theorems to fields like psychology and other social sciences, in which
users of symbols play an essential role. It is expected, however, that
the semantic concept of information will serve as a better approxima-
tion for some future explanation of a psychological concept of in-
formation than the concept dealt with in Communication Theory.

2

The fundamental concepts of the theory of semantic information
can be defined in a straightforward way on the basis of the theory
of inductive probability that has been recently developed by one of
us.!  Unfortunately, the space at our disposal does not permit us to
develop the full terminological background on which our presentation
is based. We have to refer once and for all to the extensive presenta-
tion of this background given in [Prob.] or to the more concise one
given in [Cont.]. (In the Appendix, an even more concise summary
is offered for the convenience of the reader.) Let us state only that
what follows refer to a fixed language system L7, by which we mean,
approximately, an applied first-order functional semantical system
with n individuals, say a;, a, . . ., a,, and 7 primitive properties, say
P, P,, ..., P. A disjunction which, for each of the =n atomic
statements, contains either this statement or its negation (but not
both) as a component, will be called a content-element. The content-
elements are the weakest factual statements of L inasmuch as the

1R. Carnap, Logical Foundations of Probability, University of Chicago Press, 1950,
cited hereafter as [Prob.] and The Continuum of Inductive Methods, University of
Chicago Press, 1952, cited hereafter as [Cont.].
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only factual statement L-implied by a content-element is this content-
element itself. One of the 64 content-elements in L2, for instance,
is

P,a,v ~ Pya, v ~ P a,vPya,vP a,vP,a,.

The class of all content-elements L-implied by any statement i (in L)
is called the content of this statement and denoted by ‘ Cont (i)’. It
can be easily verified that the content of any atomic statement con-
tains exactly half of all content-elements, that of an L-true statement
none, and that of an L-false statement all of them. The last property
may look slightly artificial but is no more so than the use of, say, the
null-set in set-theory.

We offer Cont (i) as an explicatum for the ordinary concept ‘ the
information conveyed by the statement i ’, taken in its semantic sense.
We have no time to show at length that Cont (i) is an adequate
explicatum. But it can be immediately verified that it fulfils at least
the condition that Cont (i) includes Cont (j) if i L-implies j. This
condition should be regarded as a necessary, though certainly not
sufficient, condition of adequacy of any proposed explanation of the
mentioned concept.

Since Cont (i) is equal to the class of the negations of the state-
descriptions contained in the range of ~ i, the properties of Cont (i)
can be easily derived from the properties of the concept ‘ range of i’
which has been treated at length in [Prob.]. 'We shall say nothing
more here.

It is often important not only to know what is the information
conveyed by some statement but also to attach a measure to this
information. We need not start afresh looking for appropriate
measure-functions ranging over contents since measure-functions
over ranges have been extensively discussed in [Prob.]. For each of
the latter m~functions, as they are called in [Prob.], a corresponding
content-measure-function is defined simply by

cont (i) = m (~1i).

cont (i) (read : the content-measure of i) is offered as one (not
the) explicatum of the ordinary concept ‘ amount of information
conveyed by i’ in its semantic sense. Among the most important
properties of cont (i), immediately derivable from the corresponding
properties of m(i) treated in [Prob.] we have

o=cont (i) =1,
149
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where the extremes are reserved for L-true and L-false statements,
respectively, and
cont (i.j) = cont (i) + cont (j) — cont (ivj).
From the last theorem follow immediately :
cont (i.j) = cont (i) + cont (j),
and the interesting additivity theorem :
cont (i.j) = cont (i) + cont (j) if and only if i and j are L-disjunct.

Here, however, an inconsistency in the intuitions of many of us
becomes apparent. Though it is indeed, after some reflection, quite
plausible that the content of a conjunction should be equal to the sum
of the contents of its components if and only if these components are
L~disjunct or content-exclusive, in other words, if they have no factual
consequences in common, it is also plausible, without much reflection,
that the content of the conjunction of two basic statements, say
‘Pja; and ‘ ~ P,a, ’ should be equal to the sum of the contents of
these statements since they are independent, and this not only in the
weak deductive sense of this term, but even in the much stronger
sense of initial irrelevance. But no two basic statements with dif-
ferent predicates are L-disjunct, since they have their disjunction,
which is a factual statement, as a common consequence. Our intui-
tions here, as in so many other cases, are in conflict and it is best to
solve this conflict by assuming that there is not one explicandum
“amount of information ’ but at least two, for one of which cont is
a suitable explicatum, whereas the explicatum for the other has still
to be found.

So far we have dealt with the information conveyed by some state-
ment separately. At times, however, we are as much, or even more,
interested in the information conveyed by a statement j in excess to
that conveyed by some other statement i or a class of statements.
We therefore define the concepts ‘ content of j relative to i’ and
¢ content-measure of j relative to i’ by

Cont (j/i) = Cont (i.j) — Cont (i)
and

cont (j/i) = cont (i.j) — cont (i)
respectively. (Notice that the * — ’ in the first of these definitions
is the symbol of class-difference, in the second that of ordinary numer-
ical difference.) The maximum value of cont (j/i) is obviously cont
(j) and this value is obtained if and only if i and j are L-disjunct. The
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minimum value of cont (j/i) is 0 and this value is obtained if, and
only if, i L-implies j. Of special interest is that

cont (j/t) = cont (j),
where t stands for any L-true statement (any ° tautology ’), since this
allows us to define cont (j) in terms of cont (jfi), thereby reversing
the definition procedure followed by us before. Even more interest-
ing is that

cont (j/i) = cont (i3j),
from which it follows that, given i, j conveys no more additional
information than i3], by itself a much weaker statement.

If we stipulate now, for the second explicatum of ‘ amounts of
information ’, that all basic statements shall convey the same amount
of information, and this independently of whether these statements
appear alone or as components in some non-contradictory conjunction,
and if we stipulate, in addition, for the purpose of normalisation, that
the amount of information conveyed by a basic statement shall be 1,
it can easily be seen, along well-known lines of computation, that
these stipulations are fulfilled if we define this second function, to be
called ‘ measure of information’ and denoted by ‘inf’, as

inf(f) = Log 1-cont (i)
(where ‘Log’ stands for log,), from which we obtain, by simple
substitution,

. e 1 .

inf(i) = Log ml) Log m (i).
The last equation is analogous to a definition of amount of information
in Communication Theory but with inductive probability instead of
statistical probability.

Among the various theorems regarding inf let us mention
o= inf(l) =

and the theorem of additivity, which, however, involves now a quite
different condition. ,
inf(i.j) = inf(i1) + inf(j) if, and only if; i is initially irrelevant to
j (with respect to that m-function on which inf is based).
Sometimes inf(i.j) is greater than inf(i) + inf(j). If anyone
should find this strange that might be due to the fact that he has sub-
consciously switched to some other explicatum, such as cont, for

which this can indeed not happen.
ISI
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Another theorem of great importance deals with inf(j/i). It
states that

e I ..

inf(j/i) = Log G- Log c(j, 1)
where c(j, 1) is the degree of confirmation of (the hypothesis) j on
(the evidence) i, defined in [Prob.] as ElrgTJ) .

The statistical correlate of inf has found a large field of application
in communication engineering. Neither cont nor its statistical
correlate have found any useful application so far. It is, however,
to be expected that the facet of the amount of information which
is measured by cont, should find its fields of application too, espec-
ially so since cont is a mathematically simpler function of m than
inf1

3

Among the various m-functions on which cont and inf may be
based, there are two groups of special importance. The first group
consists of just one member, to be designated here by ‘my —its
symbol in [Prob.] is ‘m'’ — : the second group has infinitely many
members denoted collectively by ‘m;’. mj, assigns to each content-
element the same value. This makes the computations with this
function especially easy, in general, and the preference given to it
understandable. It suffers, however, from the great disadvantage
that it does not allow us, roughly speaking, to learn from experience.
‘P,a,’, for instance, will have a cy-value of 4, on no evidence at all
or, in other words, on the tautological evidence, and the same cp-value
on the evidence ‘ P,a; . Pja, . Pja; . In spite of this defect, there are
situations in which my , cp, and the information-functions based
upon them may be of importance. Situations in which we intend
to use only deductive reasoning are of this type, hence the subscript
‘D’ for ‘ deductive .

In those situations in which inductive reasoning is to be applied,
only such m-functions may be used which allow us to learn from
experience, in other words, which fulfil the Requirement of Instantial

lIndeed, in a paper by John G. Kemeny and Paul Oppenheim,  Degree of
Factual Support ’, Philosophy of Science, 1952, 19, 288-306 (published after the present
paper was read in London), a concept of Strength of a statement was used whose
definition corresponds closely to that of our contp,.
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Relevance.l These are the functions m; ; the ‘I’ stands for induc-
tive ".

All the theorems that hold for cont and inf in general hold, of
course, also for conty and infy, and all the cont; and inf; functions.
For these more specific functions, however, additional theorems can
be proven. For lack of space, this will not be done here. Let us
only remark that certain inconsistencies in our intuitive requirements
with regard to information-functions may be due to a subconscious
switching from D-type functions to I-type functions and vice versa.

4

Situations often arise in which we do not know whether a certain
event has occurred or will occur, but only that exactly one event out
of a class of mutually exclusive events has occurred or will occur.
The statements describing these events convey each a certain amount
of information on the available evidence. It makes therefore good
sense to ask for some average of the amount of information conveyed
by these statements. . If these statements refer to future events, one
talks about the amount of information that may be expected to be
conveyed, on the average. In [Prob.] it is shown that in many
similar situations the c-mean estimate of the function in question will
be a satisfactory measure for this expected value. Confining our-
selves here, for the sake of easy comparability with prevailing Com-
munication Theory, to inf and using * exhaustive system ’ to denote
a class of statements of the above-mentioned character, we define the
(c-mean) estimate of the measure of information conveyed by (the members
of the exhaustive system) H on (the evidence) e, in symbols : est (inf, H, €),
as follows :

n
est(inf, H, €) = Sc(h,, ) x inf(hy/e).
p=1
From this definition and from a prior theorem on inf (h,/e) the theorem

est(inf, H, ) = —>'c(h,, €) x Log c(h,, €)
P

immediately follows. The communicational correlate of this theorem
is well known. We see no reason, so far, to attach any special signi-
ficance to the formal similarity of its right side to certain entropy-
type expressions in statistical thermodynamics.

1 See R. Carnap, ‘ On the Comparative Concept of Confirmation ’, this Journal,
1953, 3, p- 314
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To give a simple illustration : If on the basis of available evidence,
mainly prior observations, the c-value of the hypothesis, h;, ‘There
will be warm weather in London on the 23rd of September 1953 °,1 is
%, the c-value of h,, ‘There will be temperate weather . . .’, is {,
and the c-value of h, ‘ There will be cold weather . . .’, is %, then

est(inf, H, e) = —gc(hp, e) x Logc(hy,e)

=ixX14+}ix2+}x2=15
(where H = {h,, h,, hy}).
fH=¢h, ...h}andK=(k, ... ky} are (deductively) in-
dependent exhaustive systems (on e) (i.e. no hy . k, is L-false (on e)),
then H.K, defined as {h; .ky, by . ky. .. hy ky, by k.. by ky}is

exhaustive too (on e), hence

est(inf, H. K, &) =3 3 clby . kg €) x inf(hy . kfe).
p=1q=1

We have
est(inf, H. K, e) < est(inf, H, ¢) + est(inf, K, €),

with equality holding if, and only if, the h’s and the k’s are mutually
irrelevant.

If the statement k is added to our evidence, the posterior estimate of
the measure of information conveyed by H on e and k will, in general, be
different from the prior estimate of the measure of information conveyed
by H on e alone. 'This difference is often of great importance and will
therefore receive a special name, amount of specification of H through k
on e and be denoted by ‘sp (inf, H, k, ¢) . The formal definition is

sp(inf, H, k, e) = est(inf, H, ¢) — est(inf, H, e . k).

It is easy to see that sp(inf, H, k, e) = o if (but not only if) k is
irrelevant to the h’s on e. sp may have positive and negative values
with its maximum obviously equal to the prior estimate itself. This
value will be obtained when e.k L-implies some hy,. In this case,
H is completely specified through k (on e).

Let, to continue our previous illustration, k, be a certain report
of weather-instrument-readings. Letc(k,,e.h;) =%, c(k;,e.h,) =
c(k,,e.hy) =3%. The following diagram will help to visualise the
situation :

1The formulation of this statement exceeds already the potentialities of the
language-systems envisaged here. However, this is of no importance in this con-
nection.
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It is easy to compute, or to read from the diagram, that c(h,, e.k;) =
c(hy, e.k,) = c(hy, e.k;) = 3. Hence est(inf, H, e.k;) =Log3 =
1-585 and sp(inf, H, k,, €) = —o0-08s.

th,

1h,

\i‘

%\

th, 3 k

Situations often arise in which the event stated in k has not yet
occurred, or, at least, in which it is not known whether it has occurred
but in which it is known that either it or some other event belonging
to a certain class of events will occur or has occurred. In such cir-
cumstances, it makes sense to ask for some average of the posterior
estimate of the measure of information conveyed by H on e and
(some member of) K (the exhaustive system of the k’s). We are led

to the (c-mean) estimate of this posterior estimate denoted by
“est(inf, H/K, €) ’ and defined as

est(inf, H/K, ) =S c(k,, €) x est(inf, H, e k,).

a=1

Let us complete our illustration in the following diagram :

ih, t ks

th,

}
ih,/* 3 \k

Then est(inf, H/K, ¢) =3 c(ky, €) x est(inf, H, e. k)

q

=% x Log3+ % x Log3 = 1-180.

The estimate of the amount of specification of H through K on e is, of
course, equal to the difference between the prior estimate of the
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measure of information conveyed by H on e and the estimate of the
posterior estimate of the measure of information conveyed by H on e
and K, in symbols :
sp(inf, H, K, €) = est(inf, H, ) — est(inf, H/K, ¢).
In our example, sp(inf, H, K, ) = 15 — 1°189 = 0-311.
Let us mention only three theorems in this connection, the com-
municational correlates of which are well-known :
est(inf, H/K, e) = est(inf, H . K, ) — est(inf, K, ¢),
sp(inf, H, K, ¢) = sp(inf, K, H, ¢),
sp(inf, H, K, e) = o.

5

Lack of space prevents us from going any deeper into the
significance of the concepts and theorems indicated in the last section.
It seems that the theory of semantic information might be fruit-
fully applied in various fields, for instance in the Theory of Design
of Experiments ! and in Test Theory.2

In view of the many misunderstandings and misapplications, in
which Communication Theory has been involved, it would be
desirable to undertake a clarification of its foundations. So would be
a comparison between the theory outlined here and Communication
Theory. These two tasks will be undertaken elsewhere by one of
the authors (B.-H.).

Appendix

The language systems dealt with in this paper contain a finite number of
individual constants which stand for individuals (things, events, or positions)
and a finite number of primitive one-place predicates which designate primitive
properties of the individuals. In an atomic statement e.g., ‘Pja,’ (‘the
individual a, has the property P, ’), a primitive property is asserted to hold
for an individual. Atomic statements and statements formed out of one
or more of them with the help of the customary connectives of negation,

1Indeed, R. A. Fisher defined in The Design of Experiments, Edinburgh and
London, 1935 (in a less developed form already in papers dating back to 1922), a
concept of Amount of Information which is, however, only distantly related to that
developed here. Fisher’s concept is certainly not a communicational one, but it is,
like the communicational one, of a statistical, and not of a semantical, nature.

2Recent work done by Lee J. Cronbach at the University of Illinois seems to
point in this direction. See, ¢.g., his preliminary report * A Generalised Psychometric
Theory Based on Information Measure ’, mimeographed, March 1952.
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¢~ (“not’), of disjunction, ‘v’ (‘or’), of conjunction, ‘.’ (“and’), of
(material) implication, ‘2’ (*if . . . then’), and of (material) equiva-
lence, ‘ =’ (if and only if), are molecular statements. ~All atomic statements
and their negations are basic statements. It is known that with the help of
these tools numerical statements can be formed. Hence absolute frequencies
(cardinal numbers of classes or properties) and relative frequencies can be
expressed in them (but not measurable quantities like length and mass).

Any sentence is either L-true (logically true, analytic, e.g.
‘Pia; v ~Pa’) or L-false (logically false, self-contradictory, e.g.
‘Pja; . ~Pya,’) or factual (logically indeterminate, synthetic, e.g. * Pja; v ~
P,P;’). Logical relations can be defined, e.g. ‘ The statement i L-implies
the statement j’ for ‘i 2j is L-true’, ‘i is L-equivalent to j’ for ‘i=j is
L-true’ “iis L~disjunct with j’ for ‘ ivj is L-true ’.

A state-description is a conjunction containing as components for every
atomic statement either this statement or its negation, but not both, and
no other statements. Thus a state-description completely describes a
possible state of the universe in question. For any statement j of the
system the class of those state-descriptions in which j holds, i.e. each of which
L-implies j, is called the range of j. The range of j is null if, and only if, j
is L~false ; in any other case j is L-equivalent to the disjunction of the state-
descriptions in its range.
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